cli progress bar benchmark
Gábor Csárdi
2025-10-21
Source:vignettes/progress-benchmark.Rmd
progress-benchmark.RmdIntroduction
We make sure that the timer is not TRUE, by setting it
to ten hours.
library(cli)
# 10 hours
cli:::cli_tick_set(10 * 60 * 60 * 1000)
cli_tick_reset()
#> NULL
`__cli_update_due`
#> [1] FALSER benchmarks
The timer
fun <- function() NULL
ben_st <- bench::mark(
`__cli_update_due`,
fun(),
.Call(ccli_tick_reset),
interactive(),
check = FALSE
)
ben_st
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 __cli_update_due 0 10ns 1.15e8 0B 0
#> 2 fun() 120.02ns 141.1ns 4.78e6 0B 0
#> 3 .Call(ccli_tick_reset) 100ns 120ns 8.29e6 0B 0
#> 4 interactive() 8.96ns 10.1ns 6.10e7 0B 0
ben_st2 <- bench::mark(
if (`__cli_update_due`) foobar()
)
ben_st2
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 if (`__cli_update_due`) fo… 40ns 49ns 21704837. 0B 0
cli_progress_along()
seq <- 1:100000
ta <- cli_progress_along(seq)
bench::mark(seq[[1]], ta[[1]])
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 seq[[1]] 110ns 131ns 6999178. 0B 0
#> 2 ta[[1]] 130ns 150ns 5941641. 0B 594.
for loop
This is the baseline:
f0 <- function(n = 1e5) {
x <- 0
seq <- 1:n
for (i in seq) {
x <- x + i %% 2
}
x
}With progress bars:
fp <- function(n = 1e5) {
x <- 0
seq <- 1:n
for (i in cli_progress_along(seq)) {
x <- x + seq[[i]] %% 2
}
x
}Overhead per iteration:
ben_taf <- bench::mark(f0(), fp())
ben_taf
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0() 22.4ms 22.5ms 44.3 21.6KB 251.
#> 2 fp() 24.9ms 24.9ms 40.1 82.3KB 201.
(ben_taf$median[2] - ben_taf$median[1]) / 1e5
#> [1] 24.1ns
ben_taf2 <- bench::mark(f0(1e6), fp(1e6))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_taf2
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+06) 249ms 249ms 3.99 0B 33.3
#> 2 fp(1e+06) 265ms 266ms 3.76 1.87KB 30.1
(ben_taf2$median[2] - ben_taf2$median[1]) / 1e6
#> [1] 16.9ns
ben_taf3 <- bench::mark(f0(1e7), fp(1e7))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_taf3
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+07) 2.56s 2.56s 0.390 0B 32.7
#> 2 fp(1e+07) 2.61s 2.61s 0.383 1.87KB 31.8
(ben_taf3$median[2] - ben_taf3$median[1]) / 1e7
#> [1] 4.86ns
ben_taf4 <- bench::mark(f0(1e8), fp(1e8))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_taf4
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+08) 23.6s 23.6s 0.0425 0B 20.8
#> 2 fp(1e+08) 25.1s 25.1s 0.0398 1.87KB 19.4
(ben_taf4$median[2] - ben_taf4$median[1]) / 1e8
#> [1] 15.8nsMapping with lapply()
This is the baseline:
With an index vector:
f01 <- function(n = 1e5) {
seq <- 1:n
ret <- lapply(seq_along(seq), function(i) {
seq[[i]] %% 2
})
invisible(ret)
}With progress bars:
fp <- function(n = 1e5) {
seq <- 1:n
ret <- lapply(cli_progress_along(seq), function(i) {
seq[[i]] %% 2
})
invisible(ret)
}Overhead per iteration:
ben_tam <- bench::mark(f0(), f01(), fp())
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_tam
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0() 83.7ms 86.6ms 11.1 781KB 14.8
#> 2 f01() 115.7ms 120.5ms 7.89 781KB 11.8
#> 3 fp() 129.7ms 132.5ms 7.49 783KB 13.1
(ben_tam$median[3] - ben_tam$median[1]) / 1e5
#> [1] 460ns
ben_tam2 <- bench::mark(f0(1e6), f01(1e6), fp(1e6))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_tam2
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+06) 942.79ms 942.79ms 1.06 7.63MB 4.24
#> 2 f01(1e+06) 1.06s 1.06s 0.941 7.63MB 3.77
#> 3 fp(1e+06) 1.87s 1.87s 0.534 7.63MB 2.67
(ben_tam2$median[3] - ben_tam2$median[1]) / 1e6
#> [1] 931ns
(ben_tam2$median[3] - ben_tam2$median[2]) / 1e6
#> [1] 811nsMapping with purrr
This is the baseline:
f0 <- function(n = 1e5) {
seq <- 1:n
ret <- purrr::map(seq, function(x) {
x %% 2
})
invisible(ret)
}With index vector:
f01 <- function(n = 1e5) {
seq <- 1:n
ret <- purrr::map(seq_along(seq), function(i) {
seq[[i]] %% 2
})
invisible(ret)
}With progress bars:
fp <- function(n = 1e5) {
seq <- 1:n
ret <- purrr::map(cli_progress_along(seq), function(i) {
seq[[i]] %% 2
})
invisible(ret)
}Overhead per iteration:
ben_pur <- bench::mark(f0(), f01(), fp())
ben_pur
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0() 75.1ms 75.5ms 13.2 1.41MB 5.30
#> 2 f01() 91ms 92.2ms 10.9 781.3KB 10.9
#> 3 fp() 98.4ms 99.5ms 10.1 783.23KB 6.71
(ben_pur$median[3] - ben_pur$median[1]) / 1e5
#> [1] 240ns
(ben_pur$median[3] - ben_pur$median[2]) / 1e5
#> [1] 73.7ns
ben_pur2 <- bench::mark(f0(1e6), f01(1e6), fp(1e6))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_pur2
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+06) 855.93ms 855.93ms 1.17 7.63MB 2.34
#> 2 f01(1e+06) 1.15s 1.15s 0.867 7.63MB 3.47
#> 3 fp(1e+06) 1.47s 1.47s 0.682 7.63MB 2.04
(ben_pur2$median[3] - ben_pur2$median[1]) / 1e6
#> [1] 611ns
(ben_pur2$median[3] - ben_pur2$median[2]) / 1e6
#> [1] 314ns
ticking()
f0 <- function(n = 1e5) {
i <- 0
x <- 0
while (i < n) {
x <- x + i %% 2
i <- i + 1
}
x
}
ben_tk <- bench::mark(f0(), fp())
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_tk
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0() 26.98ms 32.45ms 31.7 39.3KB 1.98
#> 2 fp() 4.38s 4.38s 0.228 100.4KB 2.74
(ben_tk$median[2] - ben_tk$median[1]) / 1e5
#> [1] 43.5µsTraditional API
f0 <- function(n = 1e5) {
x <- 0
for (i in 1:n) {
x <- x + i %% 2
}
x
}
fp <- function(n = 1e5) {
cli_progress_bar(total = n)
x <- 0
for (i in 1:n) {
x <- x + i %% 2
cli_progress_update()
}
x
}
ff <- function(n = 1e5) {
cli_progress_bar(total = n)
x <- 0
for (i in 1:n) {
x <- x + i %% 2
if (`__cli_update_due`) cli_progress_update()
}
x
}
ben_api <- bench::mark(f0(), ff(), fp())
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_api
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0() 23.22ms 42.66ms 24.6 18.7KB 3.79
#> 2 ff() 34.04ms 51.58ms 19.8 27.6KB 1.80
#> 3 fp() 2.45s 2.45s 0.409 25.1KB 2.86
(ben_api$median[3] - ben_api$median[1]) / 1e5
#> [1] 24µs
(ben_api$median[2] - ben_api$median[1]) / 1e5
#> [1] 89.2ns
ben_api2 <- bench::mark(f0(1e6), ff(1e6), fp(1e6))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
ben_api2
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 f0(1e+06) 229.2ms 229.4ms 4.35 0B 4.35
#> 2 ff(1e+06) 332.1ms 332.5ms 3.01 1.88KB 3.01
#> 3 fp(1e+06) 22.1s 22.1s 0.0453 1.88KB 2.44
(ben_api2$median[3] - ben_api2$median[1]) / 1e6
#> [1] 21.9µs
(ben_api2$median[2] - ben_api2$median[1]) / 1e6
#> [1] 103nsC benchmarks
Baseline function:
SEXP test_baseline() {
int i;
int res = 0;
for (i = 0; i < 2000000000; i++) {
res += i % 2;
}
return ScalarInteger(res);
}Switch + modulo check:
SEXP test_modulo(SEXP progress) {
int i;
int res = 0;
int progress_ = LOGICAL(progress)[0];
for (i = 0; i < 2000000000; i++) {
if (i % 10000 == 0 && progress_) cli_progress_set(R_NilValue, i);
res += i % 2;
}
return ScalarInteger(res);
}cli progress bar API:
SEXP test_cli() {
int i;
int res = 0;
SEXP bar = PROTECT(cli_progress_bar(2000000000, NULL));
for (i = 0; i < 2000000000; i++) {
if (CLI_SHOULD_TICK) cli_progress_set(bar, i);
res += i % 2;
}
cli_progress_done(bar);
UNPROTECT(1);
return ScalarInteger(res);
}SEXP test_cli_unroll() {
int i = 0;
int res = 0;
SEXP bar = PROTECT(cli_progress_bar(2000000000, NULL));
int s, final, step = 2000000000 / 100000;
for (s = 0; s < 100000; s++) {
if (CLI_SHOULD_TICK) cli_progress_set(bar, i);
final = (s + 1) * step;
for (i = s * step; i < final; i++) {
res += i % 2;
}
}
cli_progress_done(bar);
UNPROTECT(1);
return ScalarInteger(res);
}
library(progresstest)
ben_c <- bench::mark(
test_baseline(),
test_modulo(),
test_cli(),
test_cli_unroll()
)
ben_c
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 test_baseline() 622.92ms 622.92ms 1.61 2.08KB 0
#> 2 test_modulo() 1.25s 1.25s 0.803 2.24KB 0
#> 3 test_cli() 1.24s 1.24s 0.804 23.9KB 0
#> 4 test_cli_unroll() 623.91ms 623.91ms 1.60 3.56KB 0
(ben_c$median[3] - ben_c$median[1]) / 2000000000
#> [1] 1nsDisplay update
We only update the display a fixed number of times per second. (Currently maximum five times per second.)
Let’s measure how long a single update takes.
Iterator with a bar
cli_progress_bar(total = 100000)
bench::mark(cli_progress_update(force = TRUE), max_iterations = 10000)
#> ■ 0% | ETA: 4m
#> ■ 0% | ETA: 2h
#> ■ 0% | ETA: 1h
#> ■ 0% | ETA: 1h
#> ■ 0% | ETA: 1h
#> ■ 0% | ETA: 47m
#> ■ 0% | ETA: 42m
#> ■ 0% | ETA: 38m
#> ■ 0% | ETA: 35m
#> ■ 0% | ETA: 33m
#> ■ 0% | ETA: 31m
#> ■ 0% | ETA: 29m
#> ■ 0% | ETA: 28m
#> ■ 0% | ETA: 26m
#> ■ 0% | ETA: 25m
#> ■ 0% | ETA: 24m
#> ■ 0% | ETA: 24m
#> ■ 0% | ETA: 23m
#> ■ 0% | ETA: 22m
#> ■ 0% | ETA: 22m
#> ■ 0% | ETA: 21m
#> ■ 0% | ETA: 21m
#> ■ 0% | ETA: 20m
#> ■ 0% | ETA: 20m
#> ■ 0% | ETA: 19m
#> ■ 0% | ETA: 19m
#> ■ 0% | ETA: 19m
#> ■ 0% | ETA: 19m
#> ■ 0% | ETA: 18m
#> ■ 0% | ETA: 18m
#> ■ 0% | ETA: 18m
#> ■ 0% | ETA: 18m
#> ■ 0% | ETA: 17m
#> ■ 0% | ETA: 17m
#> ■ 0% | ETA: 17m
#> ■ 0% | ETA: 17m
#> ■ 0% | ETA: 17m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 16m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 15m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> ■ 0% | ETA: 14m
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 cli_progress_update(force … 6.3ms 6.4ms 154. 1.4MB 2.02
cli_progress_done()Iterator without a bar
cli_progress_bar(total = NA)
bench::mark(cli_progress_update(force = TRUE), max_iterations = 10000)
#> ⠙ 1 done (510/s) | 3ms
#> ⠹ 2 done (70/s) | 29ms
#> ⠸ 3 done (83/s) | 37ms
#> ⠼ 4 done (92/s) | 44ms
#> ⠴ 5 done (98/s) | 52ms
#> ⠦ 6 done (103/s) | 59ms
#> ⠧ 7 done (106/s) | 66ms
#> ⠇ 8 done (109/s) | 74ms
#> ⠏ 9 done (111/s) | 81ms
#> ⠋ 10 done (113/s) | 89ms
#> ⠙ 11 done (115/s) | 96ms
#> ⠹ 12 done (116/s) | 104ms
#> ⠸ 13 done (118/s) | 111ms
#> ⠼ 14 done (119/s) | 119ms
#> ⠴ 15 done (119/s) | 126ms
#> ⠦ 16 done (120/s) | 134ms
#> ⠧ 17 done (121/s) | 141ms
#> ⠇ 18 done (122/s) | 148ms
#> ⠏ 19 done (122/s) | 156ms
#> ⠋ 20 done (123/s) | 164ms
#> ⠙ 21 done (123/s) | 172ms
#> ⠹ 22 done (123/s) | 180ms
#> ⠸ 23 done (123/s) | 187ms
#> ⠼ 24 done (124/s) | 195ms
#> ⠴ 25 done (124/s) | 202ms
#> ⠦ 26 done (124/s) | 210ms
#> ⠧ 27 done (125/s) | 217ms
#> ⠇ 28 done (125/s) | 225ms
#> ⠏ 29 done (125/s) | 232ms
#> ⠋ 30 done (126/s) | 240ms
#> ⠙ 31 done (126/s) | 247ms
#> ⠹ 32 done (126/s) | 255ms
#> ⠸ 33 done (126/s) | 263ms
#> ⠼ 34 done (126/s) | 270ms
#> ⠴ 35 done (126/s) | 278ms
#> ⠦ 36 done (127/s) | 285ms
#> ⠧ 37 done (127/s) | 293ms
#> ⠇ 38 done (127/s) | 300ms
#> ⠏ 39 done (127/s) | 308ms
#> ⠋ 40 done (127/s) | 315ms
#> ⠙ 41 done (127/s) | 323ms
#> ⠹ 42 done (127/s) | 330ms
#> ⠸ 43 done (128/s) | 338ms
#> ⠼ 44 done (128/s) | 345ms
#> ⠴ 45 done (128/s) | 353ms
#> ⠦ 46 done (128/s) | 361ms
#> ⠧ 47 done (128/s) | 368ms
#> ⠇ 48 done (128/s) | 376ms
#> ⠏ 49 done (128/s) | 383ms
#> ⠋ 50 done (128/s) | 391ms
#> ⠙ 51 done (128/s) | 398ms
#> ⠹ 52 done (128/s) | 406ms
#> ⠸ 53 done (128/s) | 413ms
#> ⠼ 54 done (129/s) | 421ms
#> ⠴ 55 done (129/s) | 428ms
#> ⠦ 56 done (128/s) | 439ms
#> ⠧ 57 done (128/s) | 446ms
#> ⠇ 58 done (128/s) | 454ms
#> ⠏ 59 done (128/s) | 461ms
#> ⠋ 60 done (128/s) | 468ms
#> ⠙ 61 done (128/s) | 476ms
#> ⠹ 62 done (128/s) | 483ms
#> ⠸ 63 done (128/s) | 491ms
#> ⠼ 64 done (129/s) | 498ms
#> ⠴ 65 done (129/s) | 506ms
#> ⠦ 66 done (129/s) | 513ms
#> ⠧ 67 done (129/s) | 521ms
#> ⠇ 68 done (129/s) | 528ms
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:> <bch:> <dbl> <bch:byt> <dbl>
#> 1 cli_progress_update(force… 7.26ms 7.47ms 133. 265KB 2.02
cli_progress_done()